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EFFECT OF VENTILATION ON THE RATES OF HEAT, SMOKE, AND
CARBON MONOXIDE PRODUCTION IN A TYPICAL JAIL CELL FIRE

B. T. Lee

Center for Fire Research
National Bureau of Standards
Washington, DC 20234

Abstract

The rates of heat release and smoke development
from a fire in a typical prison cell configuration were
examined under four doorway ventilation conditions. Peak
heat release rates varied from about 4500 kw for a 3.34 m?
doorway opening down to 340 kw for a 0.17 m? opening.
However, the total and rate of smoke generation were
greater with the small opening. The peak carbon monoxide
production rate varied from 0.03 kg/s for the large open-
ing to 0.01 kg/s for the smallest opening. The quantity
of carbon monoxide generated, however, was highest for
the smallest opening with 5.3 kg produced over the fire
duration of 1800 s. During the peak fire development
in the configuration with the larger openings, tempera-
tures inside the room reached about 1000°c with roughly
two-thirds of the heat lost to the cell room boundaries.
Peak thermal fluxes inside the room generally exceeded
the ignition threshold value of about 20 kw/m? for
clothing, bedding, and other light combustible fuel for
all of the tests.

Key words: Fire growth; fuel load; heat release rate;

prison cell fire; smoke



1. INTRODUCTION

1.1 Background

The National Institute of Justice has asked the National myreau of
Standards to prepare a fire safety evaluation system for prisons. One re-
quirement of this system is an evaluation of the fire safety of multi-level
prison cells located in a large, closed building. In the event of fire in
such facilities, fans are used to purge the smoke and hot gases from the
building. There is presently little, if any, information available on the
heat release rate and production of smoke and combustion products from
typical prison cell fires. Such information is needed to help establish the
operational requirements for these fans. In addition, information is needed
on the effect of ventilation on the prison cell fire development to aid in

the design of more fire-safe cell rooms.

The heat release rate and production of smoke and combustion products
depend on cell room construction and configuration; the type, quantity, and
distribution of combustible materials in the cell; and, on the ventilation
conditions. The latter depends on the size and location of the openings and
on the location and capacity of any mechanical means of ventilating the
cell. In practice, cell openings vary from small cell-door windows to

barred, full wall openings.

The study presented here determined the rates of heat, smoke, and
carbon monoxide production of one representative prison cell construction,
configuration, and fire loading under four natural ventilation conditions.
The fire load arrangement chosen for this study was based on a survey of
some selected prison cells at the Maryland State Penitentiary. This survey
indicated that each of the cells usually had one two-tier cot with cotton
batting mattresses, wall-mounted shelves on the back wall, and one bookcase

or bureau or storage cabinet located opposite the cots. Boxes of personal
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belongings were often stored under the lower cot. Sheets, woven goods (such
as blankets and towels), and clothing were hung between the cots and wall
shelves and sometimes across the back wall. It is likely that fire initiat-
ing at either the bookcase or at the cots could spread along these combustible

materials to involve the entire cell.

1.2 Measurement of Heat Release Rate and Heat Losses

The rate of heat release is an important factor in determining the fire
hazard associated with combustible furnishings. There are two generally
recognized methods of measuring rate of heat release. One is the standard
textbook method of measuring the temperature rise of the combustion gases
and entrained air from the burning material. A problem with this technique
is heat loss to the measurement apparatus and to the surroundings. The
other method for measuring rate of heat release relies on a measurement of
the oxygen consumed in the fire. Both techniques for measuring rate of heat
were used here. In the method involving the measurement of oxygen consump-
tion, about 13 megajoules is obtained from each kilogram of oxygen consumed
in the burning of materials normally used in the construction and furnishing
of rooms [1]1. Thus, the total rate of heat generation from burning furnish-
ings in a room can be obtained by measuring the oxygen content and volume
flow rate of the gases discharged from the fire. This total rate, QS, in-
cludes the heat released from flames extending beyond the doorway, if this
occurs, as well as the heat produced inside the room. The portion of the
heat actually generated within the room by the burning furnishings, Qd, could
be calculated from the oxygen and flow measurements at the doorway opening.
Part of the heat produced in the room is lost to the room surfaces. This
heat loss can be obtained by first calculating éd and then subtracting away
h the flux of heat leaving the room at the doorway. The quantity hg can

dl
be calculated from measurements of the volumetric flow rate and the temperature

iNurpbers in brackets refer to the literature references listed at the end of
this report.
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rise of the exhaust air at the doorway. The total flux of heat leaving the
room fire, hs, includes the heat release from flames extending beyond the
doorway, in addition to the contribution from hy- The quantity h_ can be
based on the temperature rise of the mixture of combustion gases and entrained
air at, .g9., the inlet of the exhaust collection hood, as was done in this
study. The quantity hy is equal to ds minus the heat loss to the room
boundaries and the heat loss to the surroundings between the room doorway

and the inlet of the exhaust collection system.

2. EXPERIMENTAL

2.1 Prison Cell Fire Tests

Figure 1 shows a general view of the test cell-exhaust hood arrangement.
Interior dimensions of the compartment were 1.8-m wide, 2.7-m deep, and
2.4-m high. The back and two side walls were of concrete block construction.
The ceiling was fabricated from two layers of 25-mm thick calcium silicate
board supported along the rim of the block walls and attached to the under-
side of several steel joists spanning the side walls. The front wall with
the cell opening was constructed from a single layer of the calcium silicate
board. Four fire tests, each having a different cell opening size, were
conducted during this study. One of the tests had a small opening at the
1.37-m height and another small opening near the floor. The dimensions of
these cell openings are shown in Table 1. The test cell was located adjacent
to a large 3.66 X 4.88-m exhaust collector hood having an exhaust flow

capacity of about 3 m3/s.




2.2 Fire Load and lIgnition Source

The Ffire load used for these tests was based on a survey of some
selected prison cells at the Maryland State Penitentiary. Figures 2 and 3
show some actual cells which had estimated combustible fire loads of about
34 kg/m2 of floor area. This compares with an average fire load of 23 kg/m? for
for a recreation room in a single family home in the Washington, DC metro-
politan area (2]. The total estimated mass of combustible material in a
cell room came to about 170 kg, with exposed clothing and miscellaneous
woven goods accounting for about 15 kg. Whenever possible, the room furnish-
ings observed were duplicated for the fire tests. Used cotton-batting
innerspring mattresses (having fire-retardant-treated tickings) were obtained
from a federal prison, and used clothing was purchased. Wool blankets,
which do not burn readily (3], were excluded in order to reduce costs, and
cardboard boxes of disposable paper files were used to replace the estimated
90 kg of loosely-filled combustible materials in storage cases or boxes,
Typical clothing fabric materials were also used to simulate some clothing,
towels, and other woven goods. Furnishings used in this study are listed in
Table 2. Each test used the same arrangement of the cots, shelves, and
bookcase as indicated in Figures 4 and 5. The two 0.76 x 1.94 m cots were
located 0.5 and 1.5 m from the floor. A 1.52-m wide, 0.46-m deep, and 0.66-m
high cabinet having two open shelves was mounted on the back wall 0.46 m down
from the ceiling. One wood bookcase, 1.52-m wide, 0.46-m deep, and 0.91-m
high, having two shelves, was positioned on the opposite wall of the cell
from the cots. The cover sheet at the head end of the upper cot was per-
mitted to drape down to the lower cot, and the cover sheet on the lower cot
was permitted to drape to the floor. Some of the clothes and fabric on the
top shelf of the bookcase were also permitted to drape over the paper files
on the lower shelf and to reach down to the floor. 1In all of the tests, the

fire was started with a match flame ignition of twelve pages of crumpled



newspaper located at the point indicated in Figure 4 where the bed sheet,
extending down to the floor, contacted the clothes and fabric hanging from

the bookcase.

2.3 Instrumentation

Location of all instrumentation in these cell room fire tests is in-
dicated in Table 3 and Figure 4. Measurements of the vertical temperature
profile halfway between the cots and the bookcase, and the total incident
heat flux on the room surfaces were taken to characterize the thermal envi-
ronment in the room. Thermal radiance was also measured at two positions on
both sides of the cell opening, flush with the exterior wall, to examine the
radiant heat transfer to adjacent cell rooms from flames emerging from the
fire room. Temperatures, velocities, and oxygen and carbon dioxide concen-
trations in the exhaust gases at the opening were monitored for calculation
of éd, the rate of heat generation inside the room. The same measurements
were made iIn the stack to determine és, the total rate of heat production
by the fire. This total rate represented that heat produced inside the cell
plus the portion of the heat released by the flames outside the opening. As
mentioned iIn section 1.2, temperatures and velocities measured at the opening

can also be used to determine h,, the total flux of heat leaving the fire

q
test room, i.e., the rate of heat release by the fire dd, minus the heat
losses to the room boundaries. An average temperature taken across the
inlet of the exhaust collection hood was used to calculate the rate of heat
release from individual items burning directly under the hood as well as to
measure hs, the total flux of heat from the fire test cell, including the
heat from flames extending beyond the cell opening. Smoke was monitored in
the stack, and carbon monoxide was also monitored iIn the stack and at the

cell opening to help quantify these products of combustion from the cell

room fires.




The average temperature at the inlet of the hood was monitored with a
grid of 25 chromel-alumel thermocouples arranged in parallel. Each thermo-
couple was made from Brown and Sharpe 24-gauge (0.51-mm or 0.020-in) diameter
wire. Temperatures inside the room and at the cell opening were also measured
with chromel-alumel thermocouples, made mostly with 0.51-mm wire. Due to the
propensity of the large-size thermocouples for radiation error, thermocouples
fabricated from 0.05-mm chromel and alumel wires were also employed at a
sufficient number of locations to assure that the temperature readings were
valid. Although the smaller wire thermocouples were more accurate, they
were also more difficult to prepare and were more vulnerable to breakage.
Heat flux was monitored with water-cooled total heat flux gauges of the
Gardon type. Crumpled newspaper on top of the bookcase (0.91 m above the
floor) was also used to indicate if and when the irradiance was sufficient
to ignite such light combustible materials in the lower half of the room.
Bidirectional velocity probes [4] were employed for measuring the air velocity
in the cell doorway and to note the occurrence of any flow reversal along
the doorway. The optical density of the smoke was determined by attenuation
of a light beam in the stack. Neutral optical density Filters were used to
calibrate the light sensor over the range of optical densities from 0.04 to
3.0. The optical measurements, when calibrated in this manner, provide a
useful measure of optical density. However, a more detailed calibration of
the optical system with smoke of known concentration would be required for
an accurate measurement of optical densities above about 1.5. Oxygen was
sensed directly with a paramagnetic-type instrument at the stack and with
chemical galvanic cells at the and cell opening. Non-dispersive infrared
analyzers were used to record the concentrations of carbon monoxide and

carbon dioxide at the stack and cell opening.

2.4 Corrections for Measurement of Heat Release Rate and Heat Outflow Rate

Diffusion-flame burner tests using propane were conducted inside the
cell to calibrate the exhaust stack measurement of the rate of heat release
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from room fires based on the oxygen depletion in the gases exhausted from
the room. A heating rate of 485 kW was maintained for 300 s, and this was
immediately followed with a rate of 1290 kw for another 300 s. The above
calibration tests were then repeated with the burner positioned directly
under the hood. In the calibration test, Co, was first removed ahead of the
analyzer for the oxygen measurement. Then, the test was repeated with the
co, allowed to flow through the oxygen analyzer in order to evaluate the
effect of Co, on such measurements. In the determination of heat release
rates with and without the removal of CO,, formulae given by Lawson et al

[5] were employed. These formulae are given in appendix A.l.

When the burner was operated directly under the stack, and the Co, was
removed, the values of the heat release rate calculated from oxygen consump-
tion were 7 and 6 percent higher than those calculated from the actual low
and high burner flow rates employed, respectively. In the test where the
Co, was not removed, the values calculated from oxygen consumption were 6
and 7 percent higher, than the respective burner rates used. The flow rate,
oxygen depletion, and carbon dioxide data used to calculate the heat release
rates are shown at the end of appendix A.1. When the burner having the same
heating rates was located inside the burn room, no significant.change occurred
in the oxygen consumption measured in the stack, compared with having the
burner under the stack. However, the mass flow through the stack based on
measurements taken at a single location in the stack appeared to have in-
creased by 25 percent, and this apparent increase was carried over to the
calculation of the heat release rate. One plausible explanation for this
apparent increase in mass Tlow may be that when the exhaust from the room
entered the stack it clung to the inside surface closest to the room, re-
sulting in highly non-uniform flow at the cross section of the duct where
the measurement was taken. The heat release rate values calculated from the
stack measurements were about 30 percent higher than those calculated from

the actual low and high fuel flow rates used.




Heat release rate calculations based on the flow and oxygen depletion
data at the doorway also averaged 30 percent higher than the actual burner
rates employed. Much of this difference was due to the use of velocities
taken at the vertical centerline of the doorway for calculating the mass flow
from the fire room. Quintiere and McCaffrey [6] and Tu and Babrauskas [7]
have found that calculations of mass based on outflow centerline velocities

could be 20 to 30 percent greater than the actual flow.

Based on the above findings with the calibration burner, the heat
release rates determined from measurements in the stack and cell opening for
the fire tests have been multiplied by 0.77 to obtain the corrected values.
The fact that both stack and doorway heat release rates need to be corrected
by the same factor of 0.77 is a coincidence. Only the corrected heat release
rates for és and éd, based on the stack and doorway measurements, respec-

tively, are given in this report.

Accurate measurement of the rate of heat release based on the oxygen
depletion of the exhaust in the stack or in the cell opening becomes diffi-
cult when small fuel items are burning, as small changes in oxygen concentra-
tion cannot be measured reliably with the instrumentation. Measurement of
low heat release rates becomes more feasible when the burning item is directly
under the hood where heat losses to the surroundings are small. Then the
rate of heat release can be calculated from the temperature rise and mass
flow of the combustion products and entrained air from the burning item. The
temperature rise can be based on either the thermocouple in the stack or on
the grid of 25 thermocouples at the inlet or neck of the hood. The thermo-
couple grid gives a more accurate temperature measurement as it measures the
average temperature over the stack opening and minimizes the thermal losses
to the hood by measuring temperatures closer to the burning item. The ther-
mocouple grid was then calibrated using propane as the fuel, with heating
rates of about 19, 58, 118, 234, and 447 kWw. The results shown in Figure 6

indicated that the temperature rise of the air as measured by the thermocouple
9



grid varied linearly with the rate of heat release from the calibration
burner at about 4.66 kW/°C rise in air temperature. This calibrated thermo-
couple grid was also used to provide a rough estimate of hg. the total heat
outflow rate from the cell fire tests. The heat outflow rate at the opening
of the cell, hd, can be calculated from temperatures and mass flow measure-
ments taken at the cell opening. As with the cell room heat release rate
measurements, the rates of heat outflow from the cell fire taken in the cell
opening were also multiplied by the correction factor of 0.77. Only the

corrected values for the rate of heat outflow, hy. are given in this report.

2.5 Heat Release Rates of Individual Items

Individual items such as the mattress and bedding, bookcase, loose paper
files, and piles of clothes and fabric materials were burned under the exhaust
hood to provide a rough indication of their free-burning behavior, and thus
provide some insight as to what to expect during the room fire tests with
these materials, as well as to generate additional heat release rate data
which could be used for predicting early room fire growth. The heat release
rate for each item was determined from the rise in temperature in the cali-
brated thermocouple grid discussed in the preceding section. These were
preliminary tests and were not intended to fully characterize the fire be-
havior of the individual items. A propane torch was used as the fire initi-
ation source, and each item was ignited along one end. As a safety precaution,
only a one-third section of the bookcase was burned directly under the hood
to avoid potential damage to the hood and surroundings from a fire that could

be too severe. The data from these tests are given in Figures 7 to 9.

3. RESULTS AND DISCUSSION

A summary of the heat release rate measurements for the four room fire
tests is given in Tables 4 and 5 and in Figures 10 to 17. Table 4 also sum-
marizes the methods used to calculate the rate of heat release and heat

10




outflow rate from the cell room fire tests. Figures 18 to 28 present tem-
perature profiles at various times, temperature histories at several locations
along the vertical centerline of the doorway, and the vertical distribution
of temperatures inside the test room. Table 6 gives the degree of fire
buildup, as indicated by the maximum temperature found in the doorway exhaust.
For each room fire, smoke production and the generation of CO in the fire
tests are also indicated in Table 6 and in Figures 29 to 34. Peak values of
thermal flux measured inside of the room and on the outside wall adjacent to

the doorway are shown in Table 7.

3.1 Heat Release

The rate of heat generation from the fire room was a strong function of
the ventilation conditions. The data from the exhaust stack in Table 4 shows
that the peak heat release rate increased from about 340 kW to over 4500 kW
as the doorway opening increased from 0.17 to 3.34 m?. This would be expec-
ted for ventilation-controlled fires. Figure 35 shows that the peak heat
release rate increased linearly with the increasing doorway ventilation

1/2

parameter, aAH , where A and H are the area and height of the doorway open-

/2

ing, respectively. The parameter ARY is usually used for single openings.

However, since prison cell doors can have two separate openings, an effective

AHl/2

must be used for this case. The effective value of AHY/? for test 2
with the two openings was derived by W. Parker in appendix A.2 and is shown
in Figure 35. The newspaper flashover indicator in tests 1, 3, and 4 ignited
at times of about 35, 45, and 100 s, respectively, with the likely attainment
of ventilation controlled conditions at the same times or shortly thereafter.
Test 2 appeared to have reached flashover or near flashover at about 780 s
with room air temperatures reaching about 600°c. Flashover is defined here
as the room condition where the thermal radiation level becomes high enough

to ignite light combustible materials, such as newspaper, in the lower half

of the room. This corresponds to the room fire condition where the thermal
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radiation to the floor reaches about 20 kW/m? and the air temperatures reach

600 to 650°C near the ceiling and 500 to 550°C at the top of the doorway.

Table 4 and Figure 35 show that the differences between heat release
rates measured in the stack and in the cell opening for the three fires with
the largest openings were as great as 23 percent. With the small opening in
test 2, there could have been considerable constriction or funneling of the
flow out of the opening. This would have led to high centerline velocities
which, when used to calculate mass flow, could have led to errors exceeding
the 20 to 30 percent discussed in section 2.4. For test 2, the ratio of the
calculated mass flow out of the cell room to that into the room was much
higher than the ratios for the other three tests with the larger openings.
This, in turn, led to a calculated rate of heat release at the cell opening
for test 2 which was much too high. Consequently, the heat release rate
measured in the cell opening for test 2 was 65 percent higher than that
measured iIn the stack. For tests 1, 3, and 4 having the larger openings, the
stack values were expected to be somewhat higher than the doorway values,
since some of the fuel was being consumed outside of the room, as evidenced
by flames extending beyond the doorway. Apparently, the measurement limita-
tions may have masked any difference between the rates measured in the stack
and cell opening. Figures 10 to 13 showed that the rates of heat release
measured in the stack and cell opening agreed well over the duration of the
fire. Averaged stack heat release rates over an 1800 s duration were 630,
230, 690, and 410 kW, corresponding to total heat release values of 1130,
410, 1240, and 740 MJ, for tests 1, 2, 3, and 4, respectively. The lower
average rate for test 4 may be due to a less severe room fire environment.
This may be inferred from the temperature of the air exhausting through the
opening (see Figures 21a, 22A, and 23a). The temperature iIn test 4 decreased

to below 300 to 400°C much sooner than the doorway air temperatures for tests

1 and 3.
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The heat leaving the fire room is also given in Table 4 and Figures 14
t 17. Again, the stack values are close to the doorway values. Table 5
indicated that, on the average, only about one-third of the total heat re-
leased by the fire during the peak fire development was convected out through
the doorway, with the remaining two-thirds of the heat lost to the room
boundaries. In the prison cell tests discussed iIn section 2.4, with the
calibration gas burner as the heat source, the heat outflow rate from the
cell accounted for about one-half of the heat released by the burner. The
flames from the burner extended across the ceiling to the doorway. No flames
touched the back and sides of the room. 1In the Ffire tests of the jail
furnishings, because of the distribution of fuel sources, the fire often con-
tacted the walls as well as the ceiling. This could have resulted in a
greater relative heat loss to the walls of the room itself. |In addition, the
furnishing fires produce less transparent flames than propane fires, implying

greater flame radiation, with subsequent larger heat loss to the cell surfaces.

3.2 Room Air Temperatures

The air temperature in the upper part of the room is a good measure of
fire buildup (8]. Temperatures measured with the vertical thermocouple tree
inside the room can give a good but often approximate measure of the tempera-
ture environment in the upper part of the room. Local heating and flame
contact can give readings that are higher than average. The hot air inside
the room usually becomes well mixed by the time it is exhausted through the
doorway. Consequently, the peak doorway air temperature may be a more re-
liable indicator of the fire buildup than the interior air temperature
measurement. Peak doorway air temperatures given in Table 6 varied from
867°C at 2110 s for test 2 to 1079°C at 380 s for test 3. While test 2 with
a very small opening of 0.17 m? took over 2000 s to reach its peak doorway
temperature, the other tests with doorway openings greater than 1.0 m? took

only about 500 s or less to reach the peak fire buildup.
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Analysis of the vertical temperature profiles in the doorway (Figures 18
to 20) and the temperature histories at the doorway (Figures 21 to 24)
revealed that the monitoring of air temperatures with large junction thermo-
couples could lead to errors. When there was considerable thermal strat-
ification, as in the doorway, the large junction thermocouples in the hot
upper zones behaved as thermal sources radiating to the outside and to the
cooler lower levels. The large size thermocouples in the cooler lower part
of the doorway acted as heat sinks for the radiation from the hot air, smoke,
and heated surfaces in the upper part of the room. Consequently, large
junction thermocouples registered temperatures which were too low in the hot
zone and too high in the cooler zone. Small junction thermocouples are less
prone to radiation errors, as the convective heat transfer component over-
whelms the radiative heat transfer component when smaller size junctions are
used. The differences due to thermocouple size were particularly noticeable
in Figures 18A and 19a where errors of as much as 90, 230, and 100°C were
observed near the top, middle, and bottom part of the doorway opening.
Consequently, only the data with the small junction thermocouples were used

for the mass flow and heat release rate calculations at the doorway.

When the space is completely filled with flames and little thermal
stratification exists, large and small junction thermocouples indicate about
the same temperatures. This can be seen iIn the interior air temperature
histories in the upper part of the cell, shown iIn Figures 25 to 28, at times

following flashover.

3.3 Production of Smoke and Carbon Monoxide

The smoke production in the prison cell Fire tests can be expressed by
the extinction cross section generated. This extinction cross section, E(m?),
is equal to the total mass of the smoke generated, M;(kg), times the specific
extinction coefficient, K(m2/kg). The relationship between E and the optical

density, 0.D., is given below. The optical density is defined as
14




100
T

KML

0.D. = logl0 = logloe = 0.434 KML (1)

where T is the percent transmission of the smoke meter, L(m) s Its path
length, and M(kg/m3) is the mass concentration of the smoke. Thus, E is
given by

E=KW=23V —— (2)
where v (m3®) is the volume of the smoke produced. Since v (m3/s), the volume

flow rate of the air through the doorway, and the quantity 0.D./L change

during the test, E is determined by integrating over the duration of the

E = 2.3 v (OLD'> at (3)

Equation (3) can also be related to measurements performed in the ASTM

test, or

E 662 test with the smoke density chamber [(9]. The quantity E is equivalent
to the product of the specific optical density measured in that test and the
specimen surface area employed in the test. Equation (2) can be used to
estimate the average 0.D. per meter beyond the room of fire origin if the
smoke is dispersed over a volume V, and the effect of smoke deposition and

coagulation is neglected.

IT the total mass of smoke generated were also measured routinely during
some future room fire tests, then the average specific extinction coefficient
K could be determined (i.e., K = E/Mp) . Since K is a property of the smoke
rather than a measure of its quantity, some insight might be gained into the
nature of the smoke. This might help relate 0.D. to visibility and provide
an indication of its coagulation properties, since K is a function of par-

ticle diameter. |If a functional dependence of K can be established for room
15



fires, it may be possible to utilize data on mass generation rates of smoke

from material tests to predict the optical density.

Peak smoke concentrations given in Table 6 showed that test 3 with the
3.34 m? doorway opening and test 4 with the 2.23 m2? opening had peak 0.D./L
values of 1.12 and 1.25 m™ !, respectively. These concentrations correspond
to extinction cross section per unit time values of 16.7 and 19.6 m?/s,
respectively. In contrast, test 2 had the smallest opening at 0.17 m? and
experienced the lowest level of fire buildup, but generated the most smoke
with an 0.D./L greater than 2.5 m~!, corresponding to an extinction cross
section per unit time value of greater than 24.7 m?/s. Values of 0.D./L
above 2.5 m~! are not very meaningful as this is the upper limit of the
instrumentation. Smoke generation histories for fire tests 2, 3, and 4 are
given in Figure 29. The light sensor used to measure smoke in test 3 mal-
functioned at about 120 s; however, visual observation indicated that the
most heavy smoke production occurred prior to that time. No smoke data were
recorded for test 1 due to malfunctioning of the instrument. Equation (3)
was used to calculate the smoke production as a function of time from cell
fire tests 2 and 4, with the results shown in Figure 30. Calculation of the
extinction coefficient for test 2 iIn Figure 30 assumed that the peak 0.D./L
value did not exceed 2.5 m~!. This meant that the actual smoke production
was higher than that shown for test 2. Thus, the data in Figure 30 show that
over a duration of 1800 s, the fire in the cell with the small opening pro-

duced at least 30 percent more smoke than the fire in the ce!l having a large

opening.

Peak concentrations of CO and the times at which they oc in the stack
and at 0.30 m down from the top of the cell opening are ¢iv¢ , Table 6 for
the four prison cell fire tests. Concentration levels of cc -+ this cell
opening location ranged from 3.5 percent for test 1 to 8.2 ;: t for test
2. Stack concentrations of CO were an order of magnitude .» to the
dilution of the exhaust with entrained air. A more meanin. . inting of

16




CO is in terms of mass flow, based on the measurement of the mass Fflow ratec
of the combustion gases and entrained air from the cell fire and on the
measurement of the CO concentration of this gas-air mixture, Figures 31-34
show the mass flow histories for CO for the room fire tests. Differences
between the doorway and stack measurements of the peak mass flow rate of
carbon monoxide exceeded the differences between the peak rates of heat
release taken at the same two locations for tests 1, 3 and 4. The reason for
these larger differences can be attributed to oxidation of the CO exhausting
from the doorway. Analysis of the ratio of CO to co, showed that this ratio
was much lower in the stack than at the doorway during the peak fire develop-
ment. The maximum mass flow of CO at the cell opening ranged from 0.017 kg/s
for test 2 to 0.064 kg/s for test 3. The peak mass flow at the stack varied
from 0.010 kg/s for test 2 to 0.033 kg/s for test 4, Test 2, however, pro-
duced the highest quantity of CO. The production of CO, as measured in the
stack, was 3.7, 5.3, 3.9 and 4.9 kg for cell fires 1, 2, 3, and 4, respec-

tively, over the test period of 1800 s.

3.4 Thermal Flux and Radiation

Peak thermal flux measurements inside the room and on the outside wall
close to the doorway are reported in Table 7. The highest flux values were
recorded for test 3 'with the largest doorway opening, and the lowest values
were found for test 2 having the smallest opening. The maximum flux values
for the ceiling and walls in the upper part of the room ranged from 22.6 to
121.8 kW/m? for the cell room tests. Peak radiative fluxes to the floor in
tests 1, 3, and 4 exceeded 47 kW/m?, a value larger than the 20 kW/m? chosen
to represent threshold ignition conditions [10]. Test 2, however, had a peak
recorded flux of only 8.8 kW/m? at the center of the floor. Test 2 did de-
velop interior and doorway temperatures of over 800°C, which indicated that
flashover conditions were achieved. Fallen material from the bunks and
bureau could have been partially shielding the flux meter from the radiation

from the upper portion of the room.
17



At a height of 1.5 m along the exterior wall and 1.8 m away from the
doorway, peak flux levels of 2.0 to 9.1 xwW/m? were measured for tests 1, 3,
and 4. The Flux meter at that location was not functioning properly during
test 2. At the same height along the outside wall, but 0.2 m away from the
other side of the opening, peak values of 19.3 to 23.8 kW/m? were recorded in
tests 1, 3, and 4. These flux levels were reached as early as 40 s, as in
test 3, and were sufficiently high to result in the ignition of some adjacent
fuels had they been present. For test 2, exhaust from the fire room was pri-
marily hot air and smoke, with a brief period at about 900 s where a little
extension of the flames occurred beyond the doorway opening. The plume from
the opening iIn test 2 was relatively small due to the restricted size of the
opening. Consequently, the peak thermal radiation from this plume reached

only about 0.7 kW/m? at the wall location 0.2 m away from the doorway.

4. SUMMARY

The total rates of heat, smoke, and carbon monoxide production were
measured during four fire tests iIn a 1.8-m by 2.7-m by 2.4-m high jail cell
having similar fire loads of 34 kg/m? and a range of ventilation conditions.
The findings from this series of tests are given below. No additional tests
were performed to assess the repeatability of these results. However, in
another study of fully furnished room fires [(11], good repeatability was
found between tests for measurements of interior temperatures, thermal fluxes,

and times to reach room flashover.

1. In those prison cell fire tests where the cell door openings were
1.1 m? or greater and where a combustible fire load of 34 kg per m?
of floor area was employed, flashover occurred between 30 and 100 s.
Peak heat release rates between 1460 and 4510 kW occurred at times
from 80 to 396 s., Total heat generation ranged from 740 to 1240 MJ
for a fire duration of 1800 s. Maximum temperatures of the air
discharging from the cell reached about 1000°C.

18



With a doorway opening of 0.17 m? and the same fire load of 34 kg/m?,
flashover or near-flashover with accompanying interior temperatures
of about 600°C occurred at 780 s. The peak heat release rate of
about 340 kW did not occur until about 700 s. Peak temperature of
the exhaust from the room reached 867°C at 2110 s. However, the
reduction of ventilation due to the small opening resulted in a
higher peak rate of smoke generation and at least 30 percent more
total smoke than that produced from a room fire with a larger

opening.

On the average, at the time of peak rate of heat release from
the fire, roughly two-thirds of the heat was lost to the cell
room walls, ceiling, and floor, with only one-third convected

away through the doorway.

Carbon monoxide reached peak levels of 0.013, 0.033, and

0.028 kg/s In the exhaust collection hood at times between

90 and 110 s for cell openings of 1.11, 2.23, and 3.34 m?,
respectively. A maximum level of 0.010 kg/s was attained

at 680 s In test 2 with the small opening. Total generation
of carbon monoxide, over the test duration of 1800 s, was
highest for the small opening with 5.3 kg produced as compared
with 3.7, 4.9, and 3.9 kg for cell openings of 1.11, 2.23,

and 3.34 m2, respectively.

Peak heat fluxes inside the room generally exceeded the 20 kW/m?
value which is an approximate threshold value for ignition of
light combustible fuel such as cotton bed sheets and upholstery
fabrics. Maximum Fluxes at a height of 1.5 m on the outside
wall reached about 20 kw/m? at about 0.2 m from one side of the
opening and dropped rapidly with increasing distance from the

doorway .
19



6. The cell fire having the small opening resulted in a lower
heat release rate, less total heat production, and lower air
temperatures than the fires having the larger openings.
However, total smoke generation and the total production of

carbon monoxide were greater with the small opening.
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Table 1. Doorway dimensions and test conditions in prison cell fire tests

Doorway Opening Dimensions Ambient Room Conditions
Height H Width W Area A AHl/2 Temp. Relative Humidity
Test (m) (m) (m?)  (m5/2) (°c) %
1 1.83 0.61 1.11 1.50 26 49
2 * * 0.17 0.30% 17 49
3 1.83 1.83 3.34 4.52 19 45
4 1.83 1.22 2.23 3.02 20 42

* A 0.305m X 0.305m opening in the door, with the lower ledge at a height of

1.37m, and a 0.102m high by 0.711m wide opening along the bottom of the
door. The effective value of AH1/2 was derived by Parker in appendix A.2.
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Table 2. Fuel loading in prison cell fire tests

Combustible Weight 1n Kilograms

Fuel Iltem Test 1 Test 2 Test 3 Test 4

2 mattresses* 27.7 26.3 27.2 31.8

Bedding (2 pillows,
2 pillow cases,
4 sheets) 4.5 4.5 4.5 4.5

Loose paper files
and cardboard boxes

of paper files ** 90.8 90.8 90.8 90.8
Plywood bookcase 42.7 29.1 30.4 30.0
Clothes t 9.1 9.1 9.1 9.1
Fabric tt 54 54 5.4 5.4

Total Combustible

*%*

t+

Fuel 180.2 165.2 167.4 171.6

Mattress weight excluding weight of innersprings.

45.4 xg of loose files in lower shelf of bookcase, three 9.1-kg boxes

of files under bed, and two 9.1-kg boxes of files in lower shelf of

wall cabinet.

Consisted of 4 jackets, 10 pants and 10 shirts for a total of 9.1 kg.

1.8 xg of clothing in wall shelves, 5.4 kg in upper shelf of bookcase, and
1.8 kg suspended on wires in front of wall shelves and along the wall over
the bookcase.

0.9 kg of fabric in upper wall shelves, 1.8 kg crumpled up in upper shelf
of bookcase, 1.4 kg hanging on wires in front of wall shelves, and another
1.4 kg used for privacy curtains hanging on wires alongside the cots.

80 percent of material was 0.12 kg/m? fabric having a fiber blend of

65% polyester - 35% cotton, while 20 percent of the material was 0.24 kg/m?
fabric with a blend of 65% polyester - 35% rayon.
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Table 3.

Type of Transducer

1 smoke meter

1 gas sample port (0,, CO, CO,)
1 velocity probe

1 0.51-mm thermocouple

25 0.51-mm thermocouples

12 0.51-mm thermocouples

5 0.05-mm thermocouples

7 Flux meters

11 0.51-mm thermocouples

5 0.05-mm thermocouples

3 gas sample ports
(0,, Co, Co,)

5 bi-directional velocity
probes

Location of instrumentation

Location

Exhaust hood
Exhaust hood
Exhaust hood
Exhaust hood
Inlet area of exhaust hood

Following distances below the center
of the ceiling (m) : o0, 0.025, 0.10,
0.30, 0.60, 0.90, 1.20, 1.50, 1.80,
2.10, 2.34, 2.44

Following distances below the center
of the ceiling (m): 0.10, 0.60, 1.20,
1.80, 2.34

Center of ceiling and center of floor.
0.30 and 0.76 m below ceiling on cot
side of wall and 0.76 m below ceiling
on bookcase side. 1.5 m above floor
level on exterior wall, 2.1 m to left
of right edge of doorway and 0.2 m to
right of right edge of doorway.

Following distances below the top of
the doorway (m): 0.025, 0.10, 0.30,
0.50, 0.70, 0.90, 1.10, 1.30, 1.50,
1.70, 1.83

Following distances below the top of
the doorway (m): 0.10, 0.50, 0.90,
1.30, 1.70

Following distance below the top of
the doorway (m) : 0.30, 0.70, 1.10

Following distance below the top of

the doorway (m): 0.10, 0.50, 0.90,
1.30, 1.70
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Table 5. Fraction of heat release convected away from fire room
at time of peak heat release rate

Stack Flux of Heat = Doorway Flux of Heat +
Test Stack Peak Heat Release Rate Doorway Peak Heat Release Rate
hS/Qs hd/Qd
1 0.34 0.44
2 0.26 -
3 0.31 0.34
4 0.29 0.25
0.30 Awverage 0.34 Awverage

Note: és, hy. 9., and h, are defined in Table 4.

dl
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Figure 2

Representative prison cell arrangement
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Figure 3. Representative prison cell arrangement
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LOCATION INSTRUMENTATION
1 = DOORWAY THERMOCOUPLE TREE, VELOCITY PROBES,
GAS SAMPLE PORTS
2 —— ROOM THERMOCOUPLE TREE
3 —— FLOOR AND CEILING FLUX METERS
45 = WALL FLUX METERS
6 —— NEWSPRINT FLASHOVER INDICATOR
7,8 —— FLUXMETERS FLUSH WITH EXTERIOR WALL AND
FACING AWAY FROM THE CELL
»igure 4. Plan view of fire test cell room arrangement
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APPENDIX A

a.1 Calculation of Heat Release Rate from Oxygen Depletion Measurement

The formulae given here are taken from a report by Lawson et al.* The

rate of heat release from a room fire can be expressed as:

Q.:EXO
o2 mg wOZ/Wair

where :
0 = Rate of heat released from the fire room, MW.
E = Heat per unit mass of oxygen consumed by the burning of materials
normally used in the construction and furnishing of rooms, MJ/kg.

A value of 13.2 MJ/kg was chosen based on a study by Huggett.**

= Oxygen concentration in ambient air, moles oxygen/moles air.

oo

m = Mass flow rate of air from fire room, kg/s.

Ww. = Molecular weight of oxygen, kg.

W_._ = Molecular weight of air, kg.

g = Oxygen depletion of the air.

The oxygen depletion can be further defined as:

*Lawson, J. R. et al, The Development of an Oxygen Consumption Calorimeter,
NBSIR in preparation.

**Huggett, C., Estimation of Rate of Heat Release by Means of Oxygen Con-
sumption Measurement, Fire and Materials, 4, 61-65, 1980.
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X3 - Xg
) S 2 i if the co, is trapped ahead of the oxygen analyzer
= X 1 - X
3, (17 %,)
and
o B
Yo, ” X°2/<l j XC°2>
¢ = when co, is not trapped
1 -X
o _ B ( CcO )]
x02 [1 X5 / 2
where

A
0. = Measured oxygen concentration with CO2 trapped out
2
Xg = Measured oxygen concentration when co, is not trapped
2
Xc02 = Measured concentration of co,

As an example of the use of the above formulae, the following table
outlines the calculation of the rate of heat release in the case of the cali-
1
bration burner operating directly under the stack (referto section 2.4 for

further details) .

Heat
Input
from Flow Rate Ambient Measured Measured Oxygen Rate of
Propane Through Stack o o co Depletion Heat .
Burner (20°C, 1 atm.) Cofic. Cofic. Con<. ¢ Release Q
(kW) (m3/s) (%) (%) (%) (kW)
CO2 485 2.9 20.90 20.06 - 0.0503 517
Removed 1290 2.7 20.90 18.47 - 0.1426 1365
CO2 Not 485 2.9 20.90 19.93 0.66 0.0501 515
Rermoved 1290 2.7 20.90 18.08 1.93 0.1446 1384

Note: A value of 12.75 MJ/kg or 16.96 MJ per m3 of oxygen at 20°c and 1 atm.
was-used for propane. Example:
Q = (16.96 MJ/m3) (0.209) (2.9 m3/s) (0.0503) = 0.517 MJ/s or 517 kW
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A.2 Effective Value of 2’2 for Two Vertically Displaced Small Openings in

a Room Fire (byW. J. Parker)

I - f

x
“—— N —>le—
-

Figure la Figure 1b
Room having two opening Room having one opening
areas of By and A, area of A

The effective value of the ventilation parameter aut/? is defined here as
the value of an'/? for a single rectangular opening which would provide the
same induced air inflow for a fully developed fire in a room having one open-
ing near the floor and another opening at head level, as shown in Figure la.

It 1s assumed that for this case,

(1) there is a uniform temperature, T, in the room and T, outside the

room;

(2) the air flows in through the lower opening and out through the

top opening; and,
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(3) the height of each opening in Figure la is small enough that the
velocity of the air passing through can be considered to be uniform

and equal to the value calculated at its center point.

The pressure gradient in the room is given by

T
@%—-Poga-iﬁ):s

where og is the density of the ambient air; g is the acceleration due to
gravity; Xy and x, are the distances from the neutral density plane to the
center of the openings in Figure la; and z) and z, are the distances from
the neutral density plane to the bottom and top of the opening in Figure Ib,
respectively. Then the differential pressure at the center of the openings

are @x, and Bx., . The corresponding velocities are

ZBXl 1/2 26X2 1/2
v, = and v, =
1 o 2 o

where o is the density of the air inside the room. The mass flows are

7

. <2Bxl 1/2
m, = p_ A
1 o 1 o

1/2
(ZBpoxl) Al

and

1/2
s o a ZBXZ - (28 % 1/2 A
2 2\ 7o ) 2

Since ﬁl = ﬁz and Xy = d - Xq= the neutral plane height above the center of

the lower opening is found to be
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and the mass inflow is given by

o Z
_ 1/2
mp = @Begxy) S Ay = 51172
A
P 2)
1 +(=—) | =
<po> <A1
For the single doorway case in Figure Ib,
z z 1/2
1 1 /28z
= = d
m = P W {) vdz = p_ W {) <po ) z
. 1/2 3/2
_ 2 Wz
m =3 (2690) 1
Similarly,
) 1/2 3/2 _ 2 1/2 _.\3/2
my = 5 (280)"% W2, % = 3 (ZBQ) w(n %)

The mass balance requires that

so that.
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0 1/2
: (a0, w2 (5)

= ) .
my = ) 373 Eq. (2)
/3
1+ (o
\%

The openings shown in Figures la and Ib are equivalent if they have the

same mass inflow. Comparing equation (1) and (2) and solving forWH3/2 =

1/2

AH we, have the effective value AHY/2* for the room with the two openings.

T
. oo —
Thus, letting oo 7

, we have
1/2%

AH = kAzd

where

The air temperature in the room in test 2, aside from that near the floor,
averaged about 425°C at times between 690 and 770 s, at which times the peak

rate of heat release occurred at the stack and cell opening, respectively.

Then,
T = 300 K
O
T = 698 K
_ o2
A, = 0.093 m
_ 2
A; = 0.073 m
d=147 m

1/2%

Hence, k = 2.67 and AH = 0.30 m5/2 for test 2 with the two openings.
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